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The rolling-up of the trailing vortex sheet produced by a wing of finite span is calculated 
as a series expansion in time. For a vorticity distribution corresponding to a wing with 
cusped tips, the shape of the sheet is found by summing the series using Pad6 approxi- 
mants. The sheet remains analytic for some time but ultimately develops an 
exponential spiral a t  the tips. The centroid of vorticity is conserved to high accuracy. 

1. Introduction 
Within the context of the potential theory of fluid motion surfaces of velocity 

discontinuity may be characterized as vortex sheets. Typically a shear layer in a real 
fluid is idealized by collapsing the region of large velocity gradient on to a sheet across 
which the magnitude and/or direction of the fluid velocity experiences a finite jump. 
The effects of viscosity are not considered; thus this concentrated vorticity cannot 
diffuse and the sheet will remain of zero thickness for all time. The sheet can, however, 
deform and stretch under the influence of its own induced velocity field. For example 
the vortex tube surrounding the circular jet has been observed to ‘roll up’ into 
periodic spirals. Similar behaviour has also been observed in the two-dimensional 
analogue. Rosenhead (1931) introduced a discrete-vortex approximation to study the 
time evolution of a sinusoidally perturbed two-dimensional vortex sheet across which 
the velocity jumps discontinuously. The continuous sheet is replaced by a line of point 
vortices whose strengths vary sinusoidally. The induced velocity at a given point 
vortex, at any instant in time, is given by the vector sum of the contributions from 
all the others. In  the initial stages of motion, at least, the rolling-up phenomenon is 
clearly indicated in his results. Not all vortex sheets must deform, however. Two- 
dimensional gravity waves may propagate without change of form on the interface 
between two fluids of different constant density. Within each fluid the motion is 
irrotational with a discontinuity in speed across the interface. The search for a wave 
of constant form may be thought of as the determination of that particular vortex 
sheet configuration which preserves its ‘initial ’ shape. 

A particular vortex sheet whose evolution has been a topic of extensive study is 
that left in the wake of a lifting surface or wing. The span-wise distribution of vorticity 
in the sheet is produced by the shedding of vortex lines as the lift varies along the 
wing from centreline to tip. A classical two-dimensional problem is obtained by 
considering the self-induced motion in a plane so far behind the wing that the bound 
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vorticity produces negligible effect (the ‘Trefftz-plane ’). Thus Westwater (1936 
computed the two-dimensional motion of a sheet of finite span, that is initially flat, 
with the variation of vorticity produced by a wing on which the lift varies elliptically. 
Following Rosenhead, he used the discrete-vortex approximation using ten point 
vortices of the same strength distributed along a semi-span. Each vortex is placed 
initially a t  the centroid of vorticity of the segment of the distribution it replaces. His 
results suggest an orderly rolling-up pattern starting at the edges. Earlier, Kaden 
(1931) found an analytic expression for the form of the sheet in the neighbourhood of 
the edge. He considered a semi-infinite sheet of vorticity produced by the parabolic 
lift variation that approximates the elliptic variation at the edge. Because there is no 
characteristic length in the field, Kaden was able to extract a simple similarity solution 
for the shape that, in polar co-ordinates, is a spiral whose form is given approximately 

where t is time. This is a tightly wound spiral of infinite length, a typical dimension 
of which grows as t*. Kaden’s results confirm a still earlier prediction of Prandtl & 
Betz (1927) that vortex sheets behind wings will roll up towards their tips. Because 
Kaden’s similarity solution suggests that the spiral is always completely wound up, 
even a t  t = 0+, the sheet, while sensibly flat a t  t = 0, is, in fact, higher singular at the 
tip. 

With the advent of automatic computing, it became possible to pursue the discrete- 
vortex or ‘ multi-vortex ’ approximation in much greater detail. Takami (1964) and 
others were unable to reproduce Westwater’s smooth roll-up results. Chaotic motion 
was observed near the tips even at the early stages of motion. Presumably the smooth 
patterns obtained by Westwater were due to fortuitous inaccuracy in his time- 
integration scheme. Even more disconcerting was the effect of increasing the number 
of discrete vortices. Rather than improve the results, the chaotic motion was ampli- 
fied. When two discrete vortices moved ‘ too close’ they induced inacceptibly large 
velocities upon each other. Takami also considered other distributions of vorticity 
including the one produced by a wing with cusped tips (#-power loading). In this 
cme, the strength of the sheet goes to zero a t  the tips and smoother behaviour might 
be expected. On the contrary, his results for this case indicate that the region of 
disorderly motion is not confined to the vicinity of the tips but extends over much of 
the sheet. 

A serious criticism of the multi-vortex approximation was made by Birkhoff & 
Fisher (1959). They assert that the self-induced motion of an array of point vortices 
will ultimately produce randomness of position and hence that no true rolling-up is 
possible. Perhaps motivated by this objection, several authors have modified the 
numerical problem through the introduction of various smoothing techniques. Thus 
Chorin & Bernard (1973), for example, introduce an arbitrary maximum on the 
permissible induced velocity and claim that this procedure reproduces some of the 
features of viscosity. 

A significant step forward was made by Fink & Soh (1974, 1978). After carefully 
comparing the multi-vortex model with the original Cauchy principal-value integral, 
they concluded that the former involves the neglect of initially-small logarithmic 
terms. This error becomes amplified as the sheet moves and ultimately leads to the 
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observed chaotic motions. Their improvement is simply to rediscretize at each time 
step. In  a number of applications, including the rolling-up of a trailing vortex sheet, 
their results remain smooth for much longer periods of time than had been previously 
reported. 

In addition to its inherent mathematical interest, the problem of trailing vortex- 
sheet roll-up is of significant practical importance. Spreiter & Sacks (1951) show that 
for heavily-loaded low-aspect-ratio wings, the sheet may become essentially rolled up 
into two vortex cores within a chord length of the wing trailing edge. This effect must 
be considered in a valid analysis of plane tail performance in these cases. Additional 
interest followed the introduction of wide-bodied transport planes with heavily 
loaded wings of high aspect ratio in the early 1970s. Strong vortex cores left by the 
passage of these large aircraft in the vicinity of airports have been implicated as a 
contributing factor to accidents involving smaller aircraft. 

In the present work we seek to solve for the self-induced motion of a finite two- 
dimensional vortex sheet without introducing any discretization at  all. The position 
of the vortex sheet is calculated as a power series in time with coefficients that are 
analytic functions of a curve parameter. Thus the procedure is restricted to those lift 
distributions that produce sheets whose motion is analytic in time initially. 

In  $ 2  we show that for a particular class of vorticity distributions K ( x ~ ) ,  the CO- 

efficient8 in the series will be polynomial functions of xo the curve parameter. For this 
class an algorithm to find the coefficients, suitable for machine computation, is worked 
out in detail. We pay particular attention to the case of #-power lift distribution, i.e. 
( 1 - x$ in dimensionless units. The corresponding vorticity K(X~) = 3x0( 1 - xi)* is 
the most singular distribution in the class for which the Holder condition (see, for 
example, Muskhelishvili 1958) 

I K ( x ~ ) I  < Alzo- l la  (0 < A  < co, 0 < 01 < 1) 

is satisfied at the edge@) of the sheet. The Holder condition, which is stronger than 
continuity but weaker than differentiability, is sufficient to  ensure existence of the 
Cauchy principal-value integrals from which the series coefficients are calculated. 

Results of the algorithm developed in $ 2  are presented in 33. The series for the 
sheet co-ordinates is computed to O(t42) for the #-power lift case. The series have a 
finite radius of convergence; convergence fails first at the tips for a dimensionless 
value of time of about 0.39. Using Pad6 approximants highly accurate sheet profiles- 
are computed and are compared with the numerical work of Takami and Fink & Soh, 
The limiting singularity is associated with the instantaneous appearance of a loosely- 
wound spiral of finite length. Unlike Kaden’s power-law spiral, the local solution 

r = Ke4. here is 

Once the spiral appears at the tip the analytic solution can no longer be used. One 
may conjecture, however, that, as time proceeds, more and more vorticity is drawn 
into this vortex core. 

A useful check on the series solution is provided by the invariance of the horizontal 
co-ordinate of the vorticity centroid. Two separate checks can be formulated: one 
relating to a weighted sum of the series coefficients at  any order and, secondly, a global 
check involving numerical integration of the Pad&-summed series results. Both suggest 
that the present results are effectively exact until the critical time is reached. 

16-2 
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Finally we compute the series solution that is associated with a slightly-perturbed 
elliptic lift variation. This 'solution' is completely analytic and does not include the 
singularity at the tip at  t = 0. Thus it is incomplete, does not conserve the position of 
the centroid, but it may be useful as an 'outer' solution for purposes of matching. 

2. Mathematical formulation 

distribution E(s, t ) ,  where s is arc length, is given by 
The velocity field induced at  time t ,  by a vortex sheet with concentrated vorticity 

@ , t )  = u-iv = -- 
2n s e Z - z ( S , t )  R (s9 t )as  

in the usual complex notation. The induced velocity at points on the sheet is also 
given by this expression if the Cauchy principal value of the integral is taken. E is, in 
fact, equal to the difference in the tangential components of velocity across the sheet. 
Assuming that, at the initial instant of time, the sheet lies on the x axis between 
- b and b we introduce the line parameter x, E [ - b, b] and the ' Lagrangian ' vorticity 
distribution K(x,)  defined by 

ax0 

as * 
x(S,  t )  = K(Z0)-  

Since the fluid is assumed to be inviscid, the time dependence is only found in the 
sheet-stretching factor dxo/ds. Equation (1)  becomes, for points on the sheet, 

The lift distribution is taken to be bilaterally symmetric; hence K ( z ~ )  is anti- 
symmetric and we introduce the circulation about half the vortex sheet 

The problem may be made dimensionless by selecting b as reference length and b2/r 
as reference time. Separately equating real and imaginary parts of (2) and recognizing 
that u(xo, t )  = a(z(z,, t ) ) / a t  and v(xo, t )  = a(y(xo, t ) ) / a t ,  we obtain the coupled system 
of nonlinear integro-differential equations 

where ( 4 4  

We shall now seek solutions of ( 4 )  which may be developed as power series in time 
that are uniformly convergent for z , ~  [ - 1 , 1 ] .  Clearly if such solutions exist they 

( 5 4  

R2 = [z(x,, t )  - 4 6 ,  $112 + [y(z,, t )  - y(E, t )I2.  

must be of the form m 

i= 1 
x(x0, t )  = x,+ z A&,) P i ,  

m 

y(z,,t) = 2 Bi(,,)t2i+? 
i = o  
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If we further assume that the vorticity is of the form 

it can be shown that the coefficients A,  and B, will be polynomial functions of their 
arguments. The dimensionless form of equation (3) requires that 

2 . 4 . 6 . .  .2 j  ) = 1. 

The form (6) includes the elliptic lift distribution and the #-power distribution 
produced by a cusped wing planform as special cases. It does not include the distribu- 
tions characteristic of rectangular or lenticular planforms; indeed, no series develop- 
ment in time, starting from an initially flat sheet, is possible for these later cases. 

When (5) and (6) are substituted in (4) and the coefficients of the various series in t 
are collected, the Cauchy integrations can be performed using the family of ‘airfoil 
integrals ’ 

The expressions for Yn(xo) may be found recursively according to the scheme 

4: = -7l, 

4 = xo9n-l (n even), 1 
J (n odd). 

1 . 3 . 5  ...( n- 2) 
2 . 4 . 6  ...( n- 1) 

Yn = xoYn-l -71 

It is important to note that Yn(xo) are defined only on the open interval ( -  1 , l ) .  
The series expansion procedure will now be described in detail. Several inter- 

mediate variables will be introduced both for computational convenience and also 
to  reduce the problem to one that is only quadratically nonlinear. We define A ,  = x, 

(9) 
and let c, = 4 x 0 )  -A,(E), 

I$ = I?&,) - B i g ) .  
From equation (4c), 

where 

Let 

After equating coefficients of like powers oft, we obtain, from (13) and (14) respectively, 
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for all positive integers i. The summations are identically zero when i = 0. Finally 
we differentiate equations ( 5 )  with respect to t and substitute into (4a) and (4b)  to 
obtain 1 

-1 
- 4T(i + 1)  A$+, = $ K ( 5 )  &@, 

27r(2i+ l )Bi  = f K(~)G&,  

( 1 7 4  

(17b) 
1 

-1 
for i 2 0. 

Equations (9), ( lo),  (12) and (15)-(17) form a complete system for the successive 
determination of the coefficients A to G .  If ~ ( 6 )  is of the form (6), A,  and will be 
polynomials in xo and C,, 4, E,, (xo - 6) l$ and (x,, - t )  Gi are polynomials in x0 and 5. 
The degree of these polynomials, for each i, will increase, in general, with increasing 
N .  If, for example, N = 1 in equation (6) it can be established by induction that a 
sufficient form is given by 

where 

1 Bi 

Here the square brackets denote the integer-part function. Substituting (18a), (18b) 
and (l8f) into (12) and using identities of the form 

r=O 

to eliminate the explicit dependence on the intermediate variables C, and Di we 
obtain, after some manipulation, 

The new functions introduced in (19) are defined by 

ytpf = 1 + min[t, 2p - t ,  2j, 2p - 2j], 

ytpi = min[t + i , 2 p  - t + 1,2j, 2p - 2j  + 21. 
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Summations in (19) are taken to be identically zero when the lower limit exceeds the 
upper. 

Expressions for the triply-subscripted elements Fzsi and GzSj may be obtained 
from (15) and (16) as 

i + l  x (I$sj - pii) xy-1-5 
i=l+[LI 

(s = 0, 1, ... 2i+ 1 )  (20)  

(8 = 0 , l )  ... 2i) .  (21) 

Note that the last subscript in qSi and G ,  on the left-hand side of (20) and (21 )  is 
given implicitly or computed from the exponents of xo in the quadruple sums. While 
explicit expressions similar to th3se obtained for Ektp in (19) are possible in principle, 
the present procedure is at  least as efficient computationally and avoids a great deal 
of laborious analysis. 

The system of equations for the coefficients is complete once the reduced form of 
equations (17) is obtained. For the special case of #-power wing loading, co = - c1 = 3, 
the induced velocities are continuous at the edges of the sheet and equations (17) can 
be written in a relatively simple form. The relevant family of Cauchy integrals is 

d5 (n = 1,2,  ...), 
-1 

which are related to the original family according to 

I, can be computed recursively as 

I ,  = xt-4, 
I ,  = xoI,+l (n even), 

1 .3.5.. . (n - 2) 
In'X O I '+'- 2.4.6 ...( n+ 1) (n  odd), 

from equation (8) .  
They are even or odd polynomials in xo, of the form 

where K p  are determined by 

K O =  1, 

2p- 1 
P + 2  

K p + l = ; L - K p ,  @=o,I ,... 1. 
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Equations (17) now become 

Starting with ul0 = 1 and i = 0, the five coefficient equations are solved in the 
order (19), (21), ( 2 4 ) ,  (20 ) ,  (23). The index i is then incremented by one and the next 
order of calculation is performed. 

3. Discussion of results 
The special case corresponding to the $-power lift distribution has been computed 

to O(t42)  using an optimized FORTRAN compiler on the Stanford IBM 3033. Execution 
time for a solution of order tm was found to be proportional to N 6  which is consistent 
with the number of nested summations in the algorithm of $ 2 .  For 2N = 42, the 
computation required 2.2 s of CPU time. Double-precision ( 16-place) arithmetic 
was used and all coefficients are accurate to a t  least 4 places even at the highest 
order. Extended precision would be necessary however for a solution of still higher 
order. 

Through O(t7) the coefficients in the double series for x and y can be recognized as 
rational numbers: 

x(x,, t )  = 2, + .,(Q - 8.:) t2 - XO(* - *xi ++$) t 4  

+xo($%$ - -zseo .Xo + TjT 0 -&) fi + O V ) ,  

y(x,, t)  = - (2 - gx;) t + (& - Q& t 3  - (a - &3$ -%2$ +.#gx:) t 5  

( 2 5 4  3 1 5 0 9  2 4 1 3 1 ~ - 8 1  

+ ( a U L -  2 4 s X 2  - + 7 5 3sx6 - 9 0 6 3  9 . 8 )  t7 + O ( t 9 ) .  (25b) 

The coefficients in (25) through O(t4) agree with those calculated by Professor 
M. D. Van Dyke as reported by Takami (1964). 

For a given value oft, the co-ordinates of a point (x,y) lying on the vortex sheet 
can be found by summing the series in equations (5a )  and ( 5 b ) .  Since only a finite 
number of terms in these series are known, their sum, for each value of x,, can be 
approximated by considering the convergence of the sequence of ‘ diagonal Pad6 
approximants ’ formed from such series. Pad6 approximants are ratios of polynomials 
with coefficients so chosen so that, when expanded for small argument, the power 
series expansions of these ratios agree with the original series to appropriate order. 
Diagonal approximants have the additional property that the order of the numerator 
and denominator are equal. Thus if the power series for a function . f (e)  is known 

1 4 3 3 6  112 0 1 7 9 2 0  0 320 0 ahBb 0 

- 

f ( E )  = a, + U1€ + . . . + a 2 N  €2N+ O ( P + ’ ) ,  through O(euv), 

we can, in general, form an approximant, denoted by “ I N ]  f, so that 

f ( E )  = “/NI f+ o(E2N+1),  

where 
b 0 + b l € +  ... + b l V P  

“ I N 1 f =  l + C I E +  ...+ C N f l  ’ 
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4 = 0.15 -0.2 

I 

FIGURE 1. The vortex-sheet configuration for two values oft*; 
K ( Z )  = 3Z0(1 -Zt)*. 

+0.2 

Y 

0 

-0.2 

FIGURE 2. Comparison of present data with those of Takami and Fink & Soh. .--- 0,  Takami (1964); 0, Fink & Soh (1974). t8  = 0.16, K ( z ~ )  = 3~~(1-z ; ) * .  

and the bj and cj are determined uniquely from a,, . . ., am for given N .  The sequence 
of approximants so formed will usually converge much faster than the original series 
and can converge to the analytic continuation of the series if 6 lies outside the radius 
of convergence. A number of examples of the use of this technique in the solution of 
fluid mechanics problems can be found in Cabannes (1976). 

Figure 1 shows two configurations of the vortex sheet drawn for t2 = 0.05 and 0.15. 
These have been computed as [ l O / l O ]  approximants to the t2-series for x(x,,,t) and 
y(xo, t ) / t .  Also shown in the figure is the induced velocity profile a t  t = 0 in arbitrary 
units. For t2 = 0.05, the sequence of diagonal approximants converged to 14-decimal 
places for all x ,  in [0,1]. Even the [3/3] approximants constructed from only seven 
terms in each series in (5) agree to 7-decimal places with the converged results. For 
t 2  = 0.15, on the other hand, 5-place convergence was obtained for x,  i 0.998. We 
will show below that a singularity has appeared in the t2-series to destroy convergence 
for x,, slightly greater than this value. Notice that the sheet has curved back for 
t2 = 0.15; the value of the parameter x,, where the tangent to the sheet is vertical is 
about 0.975. 
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In  figure 2 we compare the results of the present method with the multi-vortex 
results of Takami ( 1  964) and the numerical results of Fink & Soh (1974). Both authors 
have produced solutions for t2  = 0-16. Takami’s results exhibit the partial disorder 
characteristic of the simple multi-vortex representation. Fink & Soh have computed 
a smooth shape for the sheet that is in general agreement with the [10/10] approxi- 
mant solution except near the tip of the sheet. Their relatively coarse point spacing 
is, apparently, unable to resolve the details in this region. In fact, the sheet exhibits 
a singularity at xo 21 0.997 for this value of t2. Convergence of the diagonal approxi- 
mants failed for xo > 0-990 and we have only drawn the sheet up to this point. 

For a bilaterally symmetric vortex sheet it can be shown that the horizontal 
position of the centroid of vorticity, which in our parametric notation is defined by 

x = x(xo, t )  K ( X O )  dxo (26) /: 
is an invariant of the motion. We have 

Using equation (4a),  the right-hand side of (27) can be written as 

where we have used the symmetry requirements K (  - E )  = - I<(!),  y( - 5. t )  = y(6, t ) ,  
x( - f;, t )  = - x((, t) to obtain the last integral. Each integral on the right-hand side 
of (28) is invariant under the interchange of the diimmy arguments xo and 6 and 
hence is equal to zero. 

The fact that d X / d t  is zero can be used in two different ways to check our solution. 
Substituting expansion (5a )  in (27) we obtain immediately 

Ai(xo)K(xo)dxo = 0 (i = 1,2,  ...). 1; 
With A,  = Zjr0 ccijxij+l and K = 3x0( 1 - @)*, the integrations can be performed to 
yield a check on the sums of the coefficients at  each order in i: 

2 a i j k j  = 0 
j = O  

(i = 1,2,  ...), 

where 
1 . 3 . 5  ...( 2j+ 1 )  kj = 
2 . 4 . 6  ...( 2 j +  4) ’ 

Performing this check numerically on a$* produces a result for each i that is at 
least 16 orders of magnitude less than the largest coefficients in the sum. Thus the 
solution satisfies the consistency relation at  each order; we also have an estimate for 
the round-off error in the coefficients. 

The invariance of X can also be used to check the Pad6-summed results for x(xo, t ) .  
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- 1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

' 1.125 
0.1875 
5-025 
2.6980 
3.6734 
3.9946 
4.3389 
4.6869 
4.7915 
4.9584 

- 1.125 
0.825 
3.5601 
3.4615 
4-0983 
44265 
4.7077 
4.9226 
6.0976 
5.2414 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

5.0979 
5.2161 
6.3176 
6.4055 
5.4828 
5.5506 
5-61 10 
5.6650 
5.7137 
5.7577 

6-3620 
5.4646 
5.5528 
5.6295 
5.6988 
5.7563 
6.8093 
5-8669 
6.8997 
6.9386 

TABLE 1. Ratios of coefficients from equations (5) for z,, = 1. 

Using 160 equally spaced values of xo on [ O ,  13 and Simpson's rule to integrate (26) 
numerically for 22 = 0.14 produced a result which differed by only 0.02 per cent from 
the correct value X = 3n/16. 

For the #-power lift distribution that we have treated, the vortex sheet is an 
analytic curve for lxol d 1 in the initial stages of motion. A singularity, that is always 
present on the analytic continuation of the sheet, i.e. Ixol > 1, moves inward as time 
progresses and arrives at xo = 1 when t2 = ti. 

The nature of the singularity and the corresponding value of t i  can be estimated 
by use of a graphical procedure due to Domb & Sykes (1957). They note that if 

m 

f(s) = r, anEn = K(s*-8)" (a * 0, 1, ...), 
n=O 

then a/u,-, = s;l[l-(1+a)/n], P9b) 
which follows from the binomial expansion. Thus, for these special cases, if we plot 
the ratios an/an-, versus l/n, the points will be on a straight line. In general the 
unknown function f can be thought of as the sum of a number of singularities; if the 
one closest to the origin of 8 is of the above type, then the 'Domb-Sykes plot' will 
ultimately tend towards a straight line as l/n becomes small. Values of e* and a 
appropriate to this singularity can be found from the inclination and intercept of this 
straight line. When only a finite number of ratios are known, estimates of E* and a 
can still be made if the plotted points tend towards a straight-line asymptote. It has 
not generally been recognized that (29) is still valid for complex values of a,, in which 
case the asymptote will be a straight line in (l/n, Re{a,/a,-,}, Im{un/un-l}) space. 

At the tip of the sheet, xo = 1, the coefficients in the t2 series for x and y in equations 
(5) have been used to construct the ratios A,( l)/An-l( 1) and Bn( l)/Bn-l( 1) .  They 
are given in table 1.  While each set of ratios appears to tend towards a limit, a careful 
examination reveals that these limits, if they exist, are somewhat different. Because 
of the intimate coupling between the two series implied by the governing equations 
(4a, b),  this difference in the limits is unacceptable. That is, for a given value of xo, the 
series for x cannot converge for certain values of t 2  while the series for y, which is 
derived from it, diverges for these values. A more consistent interpretation is obtained 
by considering the complex series for the quantity 
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1 - 1.125 
2 0.4170 
3 3.6833 
4 3.3434 
5 4.0558 
6 4.3911 
7 4.6827 
8 4.9031 
9 5-0820 

10 5.2286 

0.0 
0.3060 

- 0.4066 
0-2761 
0.1275 
0.1185 
0-0927 
0.0786 
0.0673 
0.0588 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

5.3513 
5.4554 
5.5448 
5.6225 
5.6906 
5.7508 
5.8044 
5-8524 
5.8957 
5.9349 

0-0522 
0-0468 
0-0425 
0.0388 
0.0358 
0.0331 
0.0308 
0.0289 
0.027 1 
0.0266 

TABLE 2. Ratios of complex coefficients Cn(l)/Cn-l(l) from equation (30). 

r 

I I I 1 

0 0.05 0.10 0.15 0.20 

ll(n + 3) 
FIQURE 3. Domb-Sykes plots for the series XPOCn(1)tZn in equation (30). 

The real and imaginary parts of the ratio Cn(l)/Cn-l(l) are given in table 2 and 
are also plotted in figure 3. The abscissa has been taken as l/(n + 5/4); the shift in n, 
related to the local behaviour of a regular function which multiplies the singular one 
near t:, is determined so as to minimize the curvature in the real-ratio plot. The 
straight line shown in the figure has the equation 

1 
Re {Cn/Cn-l} = - 1 - - 6.7286 [ ' 

This line provides a virtually perfect fit to the ratios for n 2 7. The points corres- 
ponding to the small imaginary part of the ratios do not lie on a straight line. They 
can be fitted to a smooth curve, however, which plausibly can be extrapolated to the 
origin. Near the critical value tg = 0.14862 + i 0.0, the left-hand side of (30) vanes 
locally like 

(31) 
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The imaginary part of the exponent is estimated from the slope of the curve fitting 
Im{Cn/Cn-l} at the origin. Consequently, its value cannot be considered as accurate 
as Re{a} = 4. Because of the shift in the horizontal axis in figure 3, the regular 
function R, probably behaves locally as t -k .  The regular functions R, and R2 could be 
estimated by comparing the model equation (31) with the original series but this has 
not been attempted. 

From the model function (31) the local behaviour of the vortex sheet, specifically 
the trajectory of the sheet tip, may be deduced. Let 

where A and 0, are real constants, representing the dilatation and rotation necessary 
to match the local behaviour to the ‘outer’ solution. Equation (32) represents a spiral 
of the form (e-e,) = - 0 . 0 6 7 i h ~ )  

or R = e-224@-0&. 

We now verify that the special form of the sheet near the tip, for fixed time, is also 
an exponential (logarithmic) spiral with the polar equation 

r = Ke-CB. (33) 

Here r is measured from the spiral centre and K and c are positive constants when 
the spiral contracts in the anticlockwise sense. Since the contraction angle dr l ( rd8 )  
is constant, it follows immediately that dB = dY, where Y is the angle subtended by 
a tangent to the spiral. Hence the radius of curvature p is given by 

as 
dy” 

p = - =  (1 + c2)* Ke+* = constant x e-C\r, 

where s is the length. If the subscripts 1 and 2 denote any two points on the spiral we 
have immediately 

In- = -c(Yl-Y,). P1 
P2 

Because the representation of the solution (25) is a power series in time rather that 
curve parameter x,, the Domb-Sykes method cannot be used to find the critical form 
of the spacial variation for fixed time. However the co-ordinates (2, y / t )  of points on 
the sheet can be found by Pad6 summation of the series in (25). For t2 = 0.148, slightly 
less than the critical value ti found above, a number of points in the interval 
z , ~  [0-9,1.0] have been computed. Arc length and spiral inclination can be calculated 
from these co-ordinates as well as numerical estimates of the radius of curvature. A 
semi-logarithmic plot of p versus Y is approximately a straight line whose slope 
suggests a value of c of about 10. 

Unlike Kaden’s (1931) similarity solution for the tip region of the vortex sheet 
shed by an elliptically loaded wing, R = K/O#, which is a tightly wound spiral of 
infinite length, (33) represents a loosely wound spiral whose length, as 8 goes to 
infinity, is finite. The value of c in (33) shows that in one revolution the spiral radius 
decreases by about 27 orders of magnitude. Because of the exponential character of 
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the spiral and its very loose winding, it is not surprising that the roll-up cannot be 
observed in the sheet configurations in figures 1 and 2. 

As mentioned above, the radius of convergence of the series in time varies with x,. 
The procedure used to predict ti for xo = 1 was also employed for xo = 0.999 and 
1.001 to yield the first-order variation 

tg(x,) N 0.14862 - 2-88(x0- 1) 

near x, = 1. For significantly smaller values of xo, the ratio-plot procedure did not 
give accurate results, presumably due to the complexity of the pattern of singularities. 
It is clear, however, that the radius of convergence increases as lxol is reduced. For 
values of t 2  greater than 0.14862, the series solution cannot predict the evolution 
of the vortex sheet because the vorticity distribution is no longer analytic on it. 
One may conjecture, however, that the vorticity between the critical value of 
x, and x, = 1 becomes concentrated in a small neighbourhood of the spiral 
centre. 

As the sheet deforms from its initially flat configuration, vorticity is convected 
outward towards the tips. The vortex intensity is given by 

K"(& t )  = 4 x o ) / C ~ s / d ~ , ) ,  (34) 

which varies as the sheet is stretched. Since 

the stretching may be computed using Pad6 sums for the series Zc,Ak(x,)t2 and 
tX.,BA(x,) t2n. Figure 4 shows ds/dxo plotted versus x, for t2 = 0, 0.05 and 0,148. Com- 
bining these results with K(x, )  gives K(s,  t )  according to (34). It is plotted versus x in 
figure 5. Note that X is a double-valued function of x near the tip for t2  = 0.148 because 
the sheet has bent back towards the centre. 

We shall now consider formal power-series solutions for vortex sheets whose vorticity 
distributions differ slightly from that produced by elliptic loading. For strictly 
elliptic loading, the airfoil integral (7) predicts constant downwash velocity on the 
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FIGURE 5. Variation of vortex-sheet strength for three values of time; ~ ( 2 ~ )  = 32,( 1 - z:)*. 

0.5 t = O  ? 
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FIGURE 6. Sheet configurations from ‘incomplete ’ solution for perturbed 
ellip tic distributions. 

open interval q, E ( - 1 , l ) .  To the extent that we restrict consideration here to analytic 
sheet configurations, the ‘formal ’ series solution is simply 

This ‘solution’ is incomplete, however. As xo+l+, for example, infinite upwash 
results. Because the induced velocities are not continuous at  the tips, the vortex sheet 
will not be analytical there. Because the discontinuity is infinite, moreover, the 
vertical induced velocity at  t = 0 must include, at  leading order, a singularity of the 
nature of a Dirac &-function there. This infinite velocity, directed at  right angles to 
the tangent to the sheet, causes the tip to roll up instantaneously into the similarity 
form predicted by Kaden. The solution (35) is valid, however, at  sufficient distance 
from the tips for sufficiently small time. It is, in essence, a ‘first-outer solution’ 

z(xg, t )  = GJ, t )  = - i t .  (35) 
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which must be joined in some way to Kaden's description of the initially small vortex 
core. 

Similar ' first-outer ' solutions can be produced by the present method for slightly 
perturbed elliptic distributions. Using the algorithm described in 5 2, we consider the 
distributions 

The series method generates the terms forced by these vorticity distributions using 
the integrals (7); the resulting solution is, of course, incomplete but fills the same 
role as does (35) for the pure elliptic case. 

Figure 6 shows the shape of the sheet, computed by the Pad6 method, a t  a later 
time, for each distribution in (36). In  both cases, the time series possess finite radii of 
convergence; again convergence fails first at the tips. The horizontal location of the 
centroid is not invariant for these incomplete solutions. 

This work has been supported, in part, by the National Aeronautics and Space 
Administration, under Contract NASA NCC 2-55. 
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